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Abstract

The reliable solution of nonlinear parameter estimation problems is an important computational problem in
Ž .the modeling of vapor–liquid equilibrium VLE . Conventional solution methods may not be reliable since they

do not guarantee convergence to the global optimum sought in the parameter estimation problem. We
demonstrate here a technique that is based on interval analysis, which can solve the nonlinear parameter
estimation problem with complete reliability, and provides a mathematical and computational guarantee that the
global optimum is found. As an example, we consider the estimation of parameters in the Wilson equation,
using VLE data sets from a variety of binary systems. Results indicate that several sets of parameter values
published in the DECHEMA VLE Data Collection correspond to local optima only, with new globally optimal
parameter values found by using the interval approach. When applied to VLE modeling, the globally optimal
parameters can provide significant improvements in predictive capability. For example, in one case, when the
previously published locally optimal parameters are used, the Wilson equation does not predict experimentally
observed homogeneous azeotropes, but, when the globally optimal parameters are used, the azeotropes are
predicted. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Parameter estimation is a common problem in many areas of science and engineering, including
such applications as the modeling of reaction kinetics and phase equilibrium. The goal is to determine
values of model parameters that provide the best fit to measured data, generally based on some type
of least squares or maximum likelihood criterion. This may require the solution of a nonlinear and
frequently nonconvex optimization problem, which often may be formulated either in constrained or
unconstrained form.
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Many different local methods have been proposed to efficiently perform the constrained or
unconstrained optimization. Many of these local optimization techniques use gradient-based ap-

Ž w x. Žproaches; these include Gauss–Newton methods e.g., Refs. 1–4 , Gauss–Marquardt methods e.g.,
w x. Ž . Ž w x.Ref. 5 , and successive quadratic programming SQP methods e.g., Refs. 6,7 . Alternatively, if

gradient evaluations are expensive or there are difficulties with singularities, then nongradient
Ž w x.methods such as the simplex pattern search may be used e.g., Refs. 8,9 .

It is not uncommon for the objective function in nonlinear parameter estimation problems to be
nonconvex and thus to potentially have multiple local optima. However, the standard methods used to
solve these problems, such as those mentioned above, are local methods that provide no guarantee
that the global optimum, and thus the best set of model parameters, has been found. Therefore, there
is a need for global optimization in nonlinear parameter estimation. One approach that has been

Ž w x.suggested is adaptive random search e.g., Refs. 10,11 . Here the search for the optimal parameter
values has a randomized component, allowing the potential for discovering multiple local optima.
However, such stochastic methods cannot provide any mathematical guarantees that the global

w xoptimum has been found. Another approach suggested by Esposito and Floudas 12,13 is to
reformulate the problem in terms of convex underestimating functions and then use a branch and
bound procedure. This is a deterministic global optimization method that can provide a theoretical
guarantee of global optimality. One difficulty with this approach is that, in general, it is necessary to
perform problem reformulations and develop convex underestimators specific to each new applica-
tion. Also, branch and bound methods implemented in floating-point arithmetic may be vulnerable to
rounding-error problems, and thus lose their theoretical guarantees. An alternative approach for global

w xoptimization in this context is the use of interval analysis. For example, Moore et al. 14 , and
w xCsendes and Ratz 15 have both used parameter estimation as an example in demonstrating more

general algorithms based on interval methods.
We demonstrate here the use of interval analysis for determining a global optimum in nonlinear

parameter estimation problems of interest in modeling VLE. It is shown that even for relatively
simple models, such as the Wilson equation, multiple local optima can occur in parameter estimation.
It is also shown that for some data sets, parameter values published in the DECHEMA VLE Data

w xCollection 8 correspond to a local but not global optimum. We then demonstrate how a global
optimization procedure based on interval analysis can be used to reliably determine the globally
optimal parameter values. The method used involves the use of an interval-Newton technique
combined with interval-branch-and-bound. This method provides a mathematical and computational
guarantee of global optimality in parameter estimation. The reliability of the method is demonstrated

w xusing several VLE data sets, with the globally optimal parameters compared to published values 8
obtained by using local methods. The effect of using the globally, as opposed to locally, optimal
parameter values in VLE calculations is also considered.

2. Parameter estimation

ŽSeveral good introductions to the problem of parameter estimation are available e.g, Refs.
w x.16–18 . Suppose that observations y of is1, . . . ,m dependent response variables from js1, . . . ,nji

experiments are available, and the responses are to be fit to a model taking an explicit form



( )C.-Y. Gau et al.rFluid Phase Equilibria 168 2000 1–18 3

Ž . Ž .T Ž .Ty s f x ,u , with independent variables x s x , x , . . . , x and parameters us u ,u , . . . ,u .ji i j j j1 j2 j p 1 2 q

Measurement errors in x can either be neglected or treated using an error-in-variables approach.j
Ž . Ž .Various objective functions or estimators f u can be used to determine the parameter values that

provide the ‘‘best’’ fit. In many circumstances, a maximum likelihood criterion is most appropriate.
However, if a diagonal covariance matrix is assumed, with systematic measurement errors accounted
for by taking the diagonal elements to be proportional to the square of the measurements y , this canji

be simplified to the widely used relative least squares criterion,

2
n m y y f x ,uŽ .ji i j

min f u ' . 1Ž . Ž .Ý Ý ž /u yjijs1 is1

w xSince the relative least squares estimator is the objective function used by Gmehling et al. 8 , and we
intend to make comparisons to the parameter values reported there, this is the objective function that

Ž .will be used here as well. The minimization of f u can be treated either as a constrained, or, by
substitution of the model into the objective function, an unconstrained minimization problem. We will

Ž .consider only the unconstrained formulation here. For minimizing f u , a wide variety of standard
minimization techniques are available. However, in general, these are local methods that provide no
certainty that a global minimum has been found. A technique is needed that can find the global

Ž .minimum of f u with mathematical and computational certainty. Interval analysis provides such a
technique. While we concentrate here on interval methods for solving the unconstrained optimization

w xproblem, interval analysis can be used for the solution of constrained problems as well 19,20 .

3. Interval analysis

Ž .A real interval Z is defined as the set of real numbers lying between and including given upper
w L U x � < L U4and lower bounds; i.e., Z s z , z s z g R z F z F z . A real interval vector Z s

Ž .TZ ,Z , . . . ,Z has n real interval components and can be interpreted geometrically as an n-dimen-1 2 n

sional rectangle. Note that in this section, lower-case quantities are real numbers and upper-case
Žquantities are intervals. Several good introductions to interval analysis are available e.g., Refs.

w x.19–21 .
Of particular interest here is the interval-Newton technique. Given a nonlinear equation system

with a finite number of real roots in some initial interval, this technique provides the capability to find
Ž .or more precisely, narrowly enclose all the roots of the system within the given initial interval. For

Ž .the unconstrained minimization of the relative least squares function f u , a common approach is to
Ž . Ž . Ž .use the gradient of f u and seek a solution of g u '=f u s0; that is, to seek a stationary point of

Ž .f u . The global minimum will be a root of this nonlinear equation system, but there could be many
other roots as well, representing local minima and maxima, and saddle points. Thus, for this approach

Ž .to be reliable, the capability to find all the roots of g u s0 is needed, and this is provided by the
interval-Newton technique. In practice, the interval-Newton procedure can also be combined with an

Ž .interval-branch-and-bound technique, so that roots of g u s0 that cannot be the global minimum
need not be found. The solution algorithm is applied to a sequence of intervals, beginning with some
initial interval QŽ0. specified by the user. This initial interval can be chosen to be sufficiently large to
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enclose all physically feasible behavior. The solution algorithm is, of course, only guaranteed to
converge to a global solution that is a stationary point within the initial interval QŽ0. chosen for the
parameters. The procedure used to establish initial parameter bounds in this study is described in
Section 4.

For an interval QŽk . in the sequence, the first step in the solution algorithm is the function-range
Ž Žk .. Ž .test. Here an interval extension G Q of the function g u is calculated. An interval extension

provides upper and lower bounds on the range of values that a function may have in a given interval.
It is often computed by substituting the given interval into the function and then evaluating the
function using interval arithmetic. The interval extension so determined is often wider than the actual
range of function values, but it always includes the actual range. If there is any component of the

Ž Žk .. Žk .interval extension G Q that does not contain zero, then we may discard the current interval Q ,
since the range of the function does not include zero anywhere in this interval, and thus no solution of
Ž .g u s0 exists in this interval. We may then proceed to consider the next interval in the sequence,

Ž . Ž Žk ..since the current interval cannot contain a stationary point of f u . Otherwise, if 0gG Q , then
testing of QŽk . continues.

Ž Žk ..The next step is the objective-range test. The interval extension F Q , which contains the range
Ž . Žk . Ž Žk ..of f u over Q , is computed. If the lower bound of F Q is greater than a known upper bound

Ž . Žk .on the global minimum of f u , then Q cannot contain the global minimum and need not be
Žk . Ž .further tested. Otherwise, testing of Q continues. The upper bound on the global minimum of f u

used for comparison in this step can be determined and updated in a number of different ways. Here
we simply use the upper bounds of previously tested Q intervals that may contain stationary points.
An approach that is usually more efficient, though requires additional objective-function evaluations,

Ž .is to use point evaluations of f u , done at the midpoint of previously tested Q intervals that may
contain stationary points. We have used this procedure in solving larger parameter estimation

Ž .problems than described here see Section 6 .
The next step is the interval-Newton test. Here the linear interval equation system

GX QŽk . NŽk .yuŽk . syg uŽk . 2Ž . Ž . Ž . Ž .
Žk . XŽ Žk ..is set up and solved for a new interval N , where G Q is an interval extension of the Jacobian of

Ž . Ž . Žk . Žk .g u , i.e., the Hessian of f u , over the current interval Q , and u is a point in the interior of
Žk . Ž w x. U Žk .Q , usually taken to be the midpoint. It has been shown e.g., Refs. 19–21 that any root u gQ

is also contained in the image NŽk ., implying that if there is no intersection between QŽk . and NŽk .

then no root exists in QŽk ., and suggesting the iteration scheme QŽkq1.sQŽk .lNŽk .. In addition to
Žthis iteration step, which can be used to tightly enclose a solution, it has been proven e.g., Refs.

w x. Žk . Žk .19–21 that if N is contained completely within Q , then there is one and only one root
contained within the current interval QŽk .. This property is quite powerful, as it provides a
mathematical guarantee of the existence and uniqueness of a root within an interval when it is
satisfied.

There are thus three possible outcomes to the interval-Newton test, as shown schematically for a
Ž . Žk . Žk .two-variable problem in Figs. 1–3. The first possible outcome Fig. 1 is that N ;Q . This

Ž .represents mathematical proof that there exists a unique solution to g u s0 within the current
interval QŽk ., and that that solution also lies within the image NŽk .. This solution can be rigorously
enclosed with quadratic convergence by applying the interval-Newton step to the image and repeating
a small number of times, until the relative diameter of the interval containing this solution is less than
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Fig. 1. The computed image NŽk . is a subset of the current interval QŽk .. This is mathematical proof that there is a unique
solution of the equation system in the current interval, and furthermore, that this unique solution is also in the image.

Ž y10 .a specified tolerance typically about 10 . Alternatively, convergence to a point approximation of
the solution can be guaranteed using a routine point-Newton method starting from anywhere inside of
the current interval. The next interval in the sequence can now be tested, beginning with the

Ž . Žk . Žk .function-range test. The second possible outcome Fig. 2 is that N lQ sB. This provides
Ž .mathematical proof that no solutions of g u s0 exist within the current interval. Thus, the current

Ž .interval can be discarded and testing of next interval can begin. The final possible outcome Fig. 3 is
that the image NŽk . lies partially within the current interval QŽk .. In this case, no conclusions can be
made about the number of solutions in the current interval. However, it is known that any solution
that does exist must lie in the intersection QŽk .lNŽk .. If the intersection is sufficiently smaller than
the current interval, one can proceed by reapplying the interval-Newton test to the intersection.
Otherwise, the intersection is bisected, and the resulting two intervals added to the sequence of
intervals to be tested. This approach is referred to as an interval-Newtonrgeneralized-bisection
Ž .INrGB method.

Implementing the series of tests outlined above, we can proceed until all regions that cannot
contain the global minimum are eliminated. In the example problems considered below, we are

Fig. 2. The computed image NŽk . has a null intersection with the current interval QŽk .. This is mathematical proof that there
is no solution of the equation system in the current interval.
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Fig. 3. The computed image NŽk . has a nonnull intersection with the current interval QŽk .. Any solutions of the equation
system must lie in the intersection of the image and the current interval.

frequently interested in finding not only the global minimum, but all local minima as well, for
w xpurposes of comparison with results given in Gmehling et al. 8 . In this case, the objective-range test

Ž .described above is turned off, and the result is that enclosures of all stationary points of f u , i.e.,
Ž .roots of g u s0, are found. It should be emphasized that when machine computations with interval

arithmetic operations are done, the endpoints of an interval are computed with a directed outward
rounding. That is, the lower endpoint is rounded down to the next machine-representable number and
the upper endpoint is rounded up to the next machine-representable number. In this way, using
interval as opposed to floating-point arithmetic, any potential rounding-error problems are eliminated.
Overall, the INrGB method described above provides a procedure that is mathematically and

Ž .computationally guaranteed to find the global minimum of f u , or, if desired, to enclose all of its
Ž Ž0..stationary points within, of course, the specified initial parameter interval Q .

A more detailed description of the interval-Newton procedure used here has been given by
w xSchnepper and Stadtherr 22 . Through the addition here of the objective range test, the procedure

they describe has been combined with a simple interval-branch-and-bound scheme. Our current
implementation of the INrGB method is based on appropriately modified routines from the packages

w x w xINTBIS 23 and INTLIB 24 . Additional details concerning the implementation of interval-Newton
w x w xmethods and the theory underlying them, are available from Hansen 19 , Kearfott 20 , and Neumaier

w x21 .

4. Application to VLE modeling

Because of its importance in the design of separation systems, much attention has been given to
modeling the thermodynamics of phase equilibrium in fluid mixtures. Typically, these models take the
form of excess Gibbs energy models or equation of state models, with binary parameters in the
models determined by parameter estimation from experimental data. The problem of estimating model

Ž wparameters from experimental VLE data has attracted significant attention e.g., Refs. 2,3,5,11,25–
x. Ž w x. Ž29 , although other types of data, such as VLL e.g., Ref. 30 or ion-exchange equilibrium e.g.,

w x.Ref. 9 can also be used.
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As an example, we consider here the estimation from binary VLE data of the energy parameters in
the Wilson equation for liquid phase activity coefficient. Expressed in terms of the molar excess
Gibbs energy g E for a binary system, and the liquid-phase mole fractions x and x , the Wilson1 2

equation is:

g E

syx ln x qL x yx ln x qL x 3Ž . Ž . Ž .1 1 12 2 2 2 21 1RT

from which expressions for the activity coefficients are

L L12 21
lng syln x qL x qx y 4Ž . Ž .1 1 12 2 2 x qL x L x qx1 12 2 21 1 2

L L12 21
lng syln x qL x yx y . 5Ž . Ž .2 2 21 1 1 x qL x L x qx1 12 2 21 1 2

The binary parameters L and L are given by12 21

Õ u2 1
L s exp y 6Ž .12

Õ RT1

Õ u1 2
L s exp y , 7Ž .21

Õ RT2

where Õ and Õ are the pure component liquid molar volumes, T is the system temperature and u1 2 1

and u are the energy parameters that need to be estimated.2

Given VLE measurements and assuming an ideal vapor phase, experimental values g and g1,exp 2,exp

of the activity coefficients can be obtained from the relation:

y Pi ,exp exp
g s , is1,2, 8Ž .i ,exp 0x Pi ,exp i

where P 0 is the vapor pressure of pure component i at the system temperature T. For the examplei
w xproblems here, we follow Gmehling et al. 8 and use the relative least-squares objective:

2
n 2 g yg uŽ .ji ,exp ji ,calc

f u ' , 9Ž . Ž .Ý Ý ž /gji ,expjs1 is1

Ž . Žwhere the g u are calculated from the Wilson equation at conditions temperature, pressure andji,calc
.composition coincident to those used when measuring g . This parameter estimation problem hasji,exp

been solved for a large number of systems, and results presented in the DECHEMA VLE Data
w xCollection 8 , along with the raw VLE data.

In order to apply the interval method described above, a reasonable initial interval QŽ0.s
w Ž0. Ž0.xTQ ,Q for the Wilson energy parameters u and u needs to be determined. One approach to1 2 1 2
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doing this is by considering the range of infinite dilution activity coefficients g `. According to thei

Wilson model, the activity coefficients at infinite dilution are given by:

Õ u Õ u2 1 1 2`lng s1y ln q y exp y 10Ž .1 ž /Õ RT Õ RT1 2

Õ u Õ u1 2 2 1`lng s1y ln q y exp y . 11Ž .2 ž /Õ RT Õ RT2 1

w xA survey of infinite dilution activity coefficient data 31,32 for a large number of binary systems
w x Ž .indicates that observed data fall in the interval 0.03, 109,000 . If the other quantities in Eqs. 10 and

Ž . w x w x11 are given the reasonable enclosures 0.1, 10 for Õ rÕ and 200, 600 K for T , then the energy2 1
w xparameter range Q sQ s y8119, 123,419 calrmol can be computed. To provide for a substan-1 2

tial margin of safety in the example problems, this estimated range for the parameters is extended to
Ž0. Ž0. w xQ sQ s y8500, 320,000 calrmol. This is the initial interval used in the studies reported1 2

below. Since this is a very wide interval based on physical considerations, we believe that it is
extremely likely that it will contain the globally optimal parameter values. However, it should be
emphasized again that the solution algorithm is, of course, only guaranteed to converge to a global
solution that is a stationary point within this chosen initial parameter interval. It should also be noted
that other approaches, including the use of system-specific information, could be used to establish
reasonable initial bounds.

As one of the most frequently used and cited data collections in chemical engineering, the
w xDECHEMA VLE Data Collection 8 gives both raw VLE data and parameter estimation results for

w xu and u based on the relative least squares objective. Since Gmehling et al. 8 used a local simplex1 2
w x Ž .pattern search technique 33 for minimizing f u in the parameter estimation problem, it is possible

Ž .that the reported values of u and u do not correspond to a global minimum in f u . In some1 2

systems, the parameter values determined from different data sets are highly inconsistent, suggesting
Ž .the possibility of multiple local minima in f u . To investigate this, for several binary systems, we

selected isothermal andror isobaric data sets with at least eight data points, and re-solved these
parameter estimation problems for the global minimum using the interval method suggested here.

5. Results

5.1. Problem 1

Ž . Ž .As the first example, we consider the binary system water 1 –formic acid 2 , using 24 VLE data
sets at various isobaric conditions from the DECHEMA VLE Data Collection. In Table 1, each data
set is identified by its volume and page number in DECHEMA. The association of formic acid in the
vapor phase was accounted for using the same procedure as shown in DECHEMA.

Ž . Ž .The results for u and u and f u from DECHEMA and from the interval method INrGB1 2

suggested here are summarized in Table 1, along with the number of local minima found for each
problem. For purposes of determining all stationary local minima, the objective-range test was turned
off, as explained above. It should be noted that while point approximations are reported here for the
INrGB results, we have actually determined verified enclosures of each stationary point and
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Table 1
Ž . Ž .Parameter estimation for water 1 –formic acid 2 system

Data Volume: Data P DECHEMA INrGB No. of CPU
a Ž . Ž .set page points mm Hg minima time sŽ . Ž .u u f u u u f u1 2 1 2

1 1a:40 8 49 523 y799 0.0197 524 y800 0.0197 3 19.4
b,c2 1:11 15 50 8737 y1336 0.0814 25,083 I1336 0.0814 2 31.5
b,c3 1:28 14 50 8856 y1348 0.1425 70,543 I1348 0.1425 2 31.8
b4 1:16 9 70 558 y762 0.0399 I330 1519 0.0372 3 21.4
b5 1:12 16 100 539 y718 0.1650 I285 996 0.1114 3 31.5
b6 1:23 19 100 450 y663 0.1510 I329 1394 0.0819 3 35.2
b7 1a:36 16 100 561 y738 0.1648 I289 1012 0.1153 3 31.6
b8 1:13 14 200 892 y985 0.1410 I331 1250 0.0914 2 25.0
b9 1:17 11 200 370 y608 0.0459 I340 1404 0.0342 3 23.1
b10 1:24 22 200 337 y581 0.3564 I317 981 0.3486 3 50.1
b11 1a:37 14 200 891 y987 0.1302 I320 1218 0.0792 2 24.2

12 1:25 23 400 y317 1146 0.0610 y317 1147 0.0610 3 39.7
13 1:26 25 600 y331 1248 0.0799 y331 1246 0.0799 3 41.2
14 1:14 15 760 y195 759 0.0342 y195 759 0.0342 2 19.1
15 1:15 15 760 y278 1038 0.0106 y278 1038 0.0106 2 16.4

b16 1:18 12 760 y310 1181 0.0151 2095 I1407 0.0110 3 22.6
17 1:20 28 760 y282 985 0.353 y282 984 0.353 2 28.5
18 1:21 12 760 y366 1513 0.0257 y365 1509 0.0257 3 20.6
19 1:22 15 760 1067 y1122 0.0708 1065 y1120 0.0708 2 28.2
20 1:27 27 760 y310 1134 0.0485 y310 1134 0.0485 2 29.5

b21 1:34 14 760 694 y941 0.1606 I387 1755 0.1408 3 25.8
22 1a:38 15 760 y199 771 0.0342 y198 769 0.0342 2 18.9
23 1b:15 17 1471 1381 y1376 0.2619 1380 y1376 0.2619 1 26.9
24 1b:16 12 2237 1469 y1396 0.0885 1467 y1395 0.0883 1 19.7

a w xRefers to volume and page numbers in DECHEMA VLE Data Collection 8 .
bNew globally optimal parameters found.
c Ž .Point from DECHEMA is neither local nor global minimum. See text for discussion. Value of f u at the DECHEMA

point is greater than the global minimum at the INrGB point in the fifth significant figure for data set 2 and in the sixth
significant figure for data set 3.

Ž .computed f u for this enclosure. Each such enclosure is known to contain a unique root, based on
the interval-Newton uniqueness test described above. Thus, for example, for data set 2 in Table 1, the

w x wactual results of INrGB are u g 25,082.9286669347, 25,082.9286670875 , u g y1336.4971 2
x Ž . w x11840838, y1336.49711840836 , and f u g 0.0814284045014626, 0.0814284045015501 .

Similarly, narrow enclosures were determined in all cases with INrGB.
New globally optimal results found using INrGB are shown in bold in Table 1. It can be seen that

Ž22 of the 24 problems have multiple local minima, and that in 12 of these cases data sets 2–11, 16
. Žand 21 the results presented in DECHEMA are not globally optimal. There are two cases data sets 2
.and 3 that are unusual in that these are the only cases in which the point reported in DECHEMA is

not a stationary point, and so represents neither a local nor global minimum. If these were stationary
points, they would have been found using INrGB, since the u and u values at these points are well1 2

Ž0. Ž0. w xwithin the initial parameter interval Q sQ s y8500, 320,000 used. The fact that these are not1 2
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Table 2
Ž .Stationary points roots for data set 6

Ž .Root u , u Eigenvalues of Hessian f u Status1 2

Ž .P1 1958, y1251 7.55ey5, 2.58ey7 0.164 minimum
Ž .P2 1165, y1083 6.83ey5, y1.44ey7 0.178 saddle
Ž .P3 452, y664 6.97ey5, 9.42ey8 0.151 minimum
Ž .P4 y37.8, 38.5 9.08ey5, y3.54ey7 0.197 saddle
Ž .P5 y329, 1394 1.23ey4, 1.47ey7 0.0819 global minimum

stationary points was also verified by computing an interval enclosure of the gradient at this point and
noting that it does not contain zero. In all the other cases, the simplex pattern search method used in
DECHEMA converged to one of the local minima found using the INrGB approach. In data sets 2

Ž .and 3, the pattern search procedure appears to be moving towards the local and global minima found
using INrGB, but terminates prematurely. This is likely due to the fact that the objective function is
extremely flat in this area, so that premature termination could be caused by rounding errors, or by

Ž .using too large a convergence tolerance. The improvement in f u at the global optimum in
comparison to the nonoptimal DECHEMA point is insignificant.

We now look more closely at the results for one data set, namely data set 6. For this case, the
Ž .interval method with the objective-range test turned off found five stationary points, including three

Ž .Fig. 4. The relative error in Problem 1 data set 6 between calculated and experimental activity coefficients for water
resulting from the locally optimal parameters values found in DECHEMA and the globally optimal values found using

Ž .INrGB. The relative error for a data point at x s0.0802 is off scale roughly at y0.22 for both cases.1
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minima and two saddle points, in the initial interval of interest. These results are summarized in Table
Ž .T Ž . Ž .2. The global minimum at us y329, 1394 root P5 has an objective function value f u s0.0819

Ž .T Ž .that is only about half the magnitude of the local minimum at us 450, y663 root P3 found by
w xGmehling et al. 8 and reported in the DECHEMA Collection. As is often the case in least squares

problems of this sort, all the minima found lie in a relatively narrow valley in the parameter space.
The performance of the two different parameter sets, corresponding to the local minimum P3

Ž . Ž .DECHEMA and the global minimum P5 interval method , in predicting the activity coefficients for
Ž . Ž .water and formic acid with the Wilson equation is shown in Fig. 4 water and Fig. 5 formic acid . It

is clear that when the globally optimal parameter values from INrGB are used in the Wilson
equation, it results in less deviation from the experimental values in comparison to the case in which
the locally optimal parameters reported in DECHEMA are used.

In determining the global minimum with the interval approach, very wide initial intervals of
parameter variables were used, which, as explained above, should be wide enough to enclose any
physically feasible solution. The ability to provide a wide initial interval, as opposed to an initial point
guess, means that the method is essentially initialization independent. For each data set, the
computation time needed to perform the global optimization was roughly 16–50 s on a Sun Ultra
2r1300 workstation. The difference in times is due to the differing number of data points in each data
set, and the differing number of stationary points found. These computation times are much higher
than what is required by the local optimization methods typically used in parameter estimation. Thus,

Ž .Fig. 5. The relative error in Problem 1 data set 6 between calculated and experimental activity coefficients for formic acid
resulting from the locally optimal parameters values found in DECHEMA and the globally optimal values found using
INrGB.
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Table 3
Ž . Ž .Parameter estimation for tert-butanol 1 –1-butanol 2 system

Data Volume: Data P DECHEMA INrGB No. of CPU
a Ž . Ž .set page points mm Hg minima time sŽ . Ž .u u f u u u f u1 2 1 2

b1 2b:156 9 100 951 y602 0.0136 I568 745 0.0103 2 16.5
b2 2b:157 9 300 1068 y638 0.0158 I525 626 0.0130 2 14.4
b3 2b:158 9 500 901 y594 0.0097 I718 1265 0.0069 2 16.2
b4 2b:159 9 700 801 y561 0.0174 I734 1318 0.0137 2 16.7
b5 2f:151 17 760 153 y203 0.1300 I793 1757 0.1164 3 20.9
b6 2f:152 14 760 848 y606 0.0333 I865 2420 0.0111 2 14.1

a w xRefers to volume and page numbers in DECHEMA VLE Data Collection 8 .
bNew globally optimal parameters found.

the choice is between fast methods that may give the wrong answer, or slower methods that are
guaranteed to give the correct answer.

5.2. Problem 2

Ž . Ž .The second example is the binary system tert-butanol 1 –1-butanol 2 . Six data sets were studied
with the results shown in Table 3. In each case, there was a global minimum found by using the

Ž .Fig. 6. The relative error in Problem 2 data set 6 between calculated and experimental activity coefficients for tert-butanol
resulting from the locally optimal parameters values found in DECHEMA and the globally optimal values found using
INrGB.
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Ž .interval method INrGB that was substantially different from the local minimum reported in
DECHEMA. As an example, data set 6 was used to create relative error plots for the activity

Ž . Ž .coefficients, as shown in Fig. 6 tert-butanol and Fig. 7 1-butanol . As in the previous problem, it
can be seen again that the globally optimal parameter values result in less deviation and provide a
better fit to the experimental observations.

5.3. Problem 3

In this example problem and the next one, we will find the globally optimal parameter values, but
instead of looking just at the effect on prediction of activity coefficients, as done in the previous
examples, we will look at how the improved prediction of activity coefficients affects the prediction

Ž .of vapor–liquid equilibrium. For this problem, we use one data set for the system water 1 –1,2-
Ž . Ž .ethanediol 2 . As indicated in Table 4, the interval approach with objective-range test turned off

finds two stationary minima, one of which is the local minimum reported in DECHEMA and the other
the true global minimum, which has a much smaller objective-function value than the local minimum.

Ž .Fig. 8 shows the x–y VLE plots calculated using the globally optimal parameters INrGB and using
Ž .the locally optimal parameters DECHEMA , with comparison to the actual experimental data.

Clearly, the VLE computed using the globally optimal parameters provides a better fit to the
experimental data, especially at low water concentrations.

Ž .Fig. 7. The relative error in Problem 2 data set 6 between calculated and experimental activity coefficients for 1-butanol
resulting from the locally optimal parameters values found in DECHEMA and the globally optimal values found using
INrGB.
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Table 4
Ž . Ž .Parameter estimation for water 1 –1,2-ethanediol 2 system

Data Volume: Data P DECHEMA INrGB No. of CPU
a Ž . Ž .set page points mm Hg minima time sŽ . Ž .u u f u u u f u1 2 1 2

b1 1a:171 18 430 71 y94 3.0515 5072 I1922 1.0392 2 27.4

a w xRefers to volume and page numbers in DECHEMA VLE Data Collection 8 .
bNew globally optimal parameters found.

5.4. Problem 4

In this example problem, we look at the effect on prediction of VLE not by using an x–y plot, but
by considering the prediction of homogeneous azeotropes. The failure of a model to adequately
predict the presence of azeotropes could lead to very serious problems in the design of separation

Ž . Ž .processes. The system used for this problem is benzene 1 –hexafluorobenzene 2 , using all 10 data
sets, both isothermal and isobaric, found in DECHEMA. As shown in Table 5, using the interval

Ž .method INrGB new globally optimal parameter values are discovered in five of the 10 cases. For
Ž .these five cases, we used both the locally optimal parameters DECHEMA and the globally optimal

Ž .parameters INrGB to predict the presence and location of homogeneous azeotropes. The method of
w xMaier et al. 34 was used. This employs an interval method and is guaranteed to find all

Ž . Ž .Fig. 8. Comparison of VLE prediction for water 1 –1,2-ethanediol 2 in Problem 3 resulting from the locally optimal
parameters values found in DECHEMA and the globally optimal values found using INrGB.
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Table 5
Ž . Ž .Parameter estimation for benzene 1 –hexafluorobenzene 2 system

Ž .Data Volume: Data T 8C or DECHEMA INrGB No. of CPU
a Ž . Ž .set page points P mm Hg minima time sŽ . Ž .u u f u u u f u1 2 1 2

b1 7:228 10 T s30 437 y437 0.0382 I468 1314 0.0118 2 19.2
b2 7:229 10 40 405 y405 0.0327 I459 1227 0.0079 2 17.6
b3 7:230 10 50 374 y374 0.0289 I449 1157 0.0058 2 15.8
b4 7:233 11 50 342 y342 0.0428 I424 984 0.0089 2 14.1

5 7:231 10 60 y439 1096 0.0047 y439 1094 0.0047 2 12.4
6 7:232 9 70 y424 1035 0.0032 y425 1036 0.0032 2 10.1

b7 7:234 17 P s300 344 y347 0.0566 I432 993 0.0149 2 22.5
8 7:235 16 500 y405 906 0.0083 y407 912 0.0083 2 18.3
9 7:236 17 760 y407 923 0.0057 y399 908 0.0053 1 17.9

10 7:226 29 760 y333 702 0.0146 y335 705 0.0146 2 26.1

a w xRefers to volume and page numbers in DECHEMA VLE Data Collection 8 .
bNew globally optimal parameters found.

homogeneous azeotropes, or determine with certainty that there are none. Results of the azeotrope
w xcalculations are shown in Table 6, along with experimental data 35 indicating that this system has

two homogeneous azeotropes. However, when the locally optimal parameters reported in DECHEMA
are used in azeotrope prediction, there are three cases in which no azeotrope is found, and in the
remaining two cases only one azeotrope is found. Using the globally optimal parameters found using
the interval method proposed here, two azeotropes are predicted in all cases. In this case, by finding
the globally, as opposed to locally, optimal parameter values, it clearly makes the difference between
predicting physical reality or not. While the Wilson equation is capable of predicting the presence of
two azeotropes, the predicted location of the azeotropes differs somewhat from the experimental
values, especially for the hexafluorobenzene-rich azeotrope. This indicates that the Wilson equation is
not an entirely satisfactory model for this system.

Table 6
Ž . Ž .Azeotrope prediction for benzene 1 –hexafluorobenzene 2 system

Ž .Data T 8C or DECHEMA INrGB Experiment
Ž .set P mm Hg x x P or T x x P or T x x P or T1 2 1 2 1 2

1 T s30 0.0660 0.9340 P s107 0.0541 0.9459 P s107 0.15 0.85 P s107
0.9342 0.0658 121 0.95 0.05 120

2 40 0.0315 0.9685 168 0.0761 0.9239 168 0.16 0.84 167
0.9244 0.0756 185 0.93 0.07 183

3 50 NONE 0.0988 0.9012 255 0.17 0.83 254
0.9114 0.0886 275 0.90 0.10 273

4 50 NONE 0.0588 0.9412 256 0.17 0.83 254
0.9113 0.0887 274 0.90 0.10 273

7 P s300 NONE 0.1612 0.8388 T s54.13 0.20 0.80 T s54.55
0.9315 0.0685 52.49 0.89 0.11 52.50



( )C.-Y. Gau et al.rFluid Phase Equilibria 168 2000 1–1816

While for many of the systems in DECHEMA the parameters reported are in fact globally optimal,
the failure of standard local optimization techniques to find the globally optimal parameters is not
unique to the above systems, data sets, and model. This can also be observed in other systems in the
DECHEMA collection and with models other than the Wilson equation. This should not be surprising,
since with traditional local solution techniques, there simply is no guarantee that the global optimum
will always be found. Using the interval method described here, such a guarantee can be provided.

6. Concluding remarks

We have described here a new method for reliably solving nonlinear parameter estimation
problems in VLE modeling. The method is based on interval analysis, in particular an interval-New-
tonrgeneralized-bisection algorithm. The approach provides a mathematical and computational
guarantee that the global optimum in the parameter estimation problem is found. We applied the
technique here to several systems in which the Wilson activity coefficient model was used. However,
the technique is model independent and can be applied in connection with any thermodynamic model
for vapor–liquid equilibrium. The approach presented is general purpose and can also be used in
connection with other objective functions, such as maximum likelihood, with other types of data, or

w xwith other problem formulation, such as error-in-variable. For example, Gau and Stadtherr 36 have
w xrecently applied this approach to the solution of an error-in-variables problem 13,37 involving
w xparameter estimation in the van Laar equation. As described by Gau and Stadtherr 36 , this problem

has 12 variables that must be solved for, which can be done effectively by using a more efficient
approach for updating the upper bound on the global mininum, as noted previously in Section 3, and
by using a new type of preconditioner when solving for the interval-Newton image.

List of symbols
f model for dependent variable ii

g gradient of objective function f

g E molar excess Gibbs energy
G interval extension of g
GX interval extension of Hessian of f

m number of dependent variables
n number of experiments
N the interval-Newton image, an interval
p number of independent variables
P pressure
P 0 vapor pressure of species ii

q number of parameters
R the gas constant
R the set of real numbers
T temperature
Õ molar volume of species ii

Ž .x liquid-phase mole fraction of species i Section 4i
Ž .x ith independent variable in experiment j Section 2ji



( )C.-Y. Gau et al.rFluid Phase Equilibria 168 2000 1–18 17

Ž .y vapor-phase mole fraction of species i Section 4i
Ž .y ith dependent variable in experiment j Section 2ji

w L U xZs z , z an interval
Z an interval vector

Greek letters
g liquid-phase activity coefficient for species ii

u ith parameteri

u parameter vector
Q interval parameter vector
L binary parameter in Wilson equationi j

f objective function in parameter estimation

Subscripts
calc indicates calculated value
exp indicates experimental value

Superscripts
Ž .k indicates k th interval in solution sequence
` indicates infinite dilution
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